Showing posts with label Software. Show all posts
Showing posts with label Software. Show all posts

Friday, April 24, 2015

Install C# on Raspberry Pi 2 with Mono



Intro

We can run C# on the Raspberry Pi 2! This has made the raspberry pi very valuable in my eyes. You can use Visual Studio to compile a .exe and then RUN IT on The Pi using Mono.

What I liked about The Pi: Getting it working was dead simple. I just formatted an SD card in FAT 32, downloading and extracting a 500mb .zip file and copying the contents of the extracted folder onto the SD card. After you've accomplished that, go take a beer break, you deserved it *whew*.

I was able to just plug in the cables, put in the SD card and I running Linux on The Pi. I was using the HDMI and Ethernet ports, however. If you wish to use the tiny, headphone-jack-looking component video or a USB wireless adapter however, there will be additional steps.


Problems / Gotchas 

Winforms may not play nice with Mono when on the Raspberry pi. Specifically, the problem manifests when you attempt to use a TextBox on your form, but who uses those? This bug  is supposedly fixed in the latest releases, but I have yet to get it to work by just updating my mono. It is very likely that I have to REBUILD mono from the latest source on the pi, which can take several hours. I have not tested this. The bug tracker for this says it has to do with with the pi's 'hard floats', which is referring to hardware floating point calculations.



The hardware is not exactly what I would call stable. Sometimes it does not POST (the BIOS is a binary blob, so does a pi really have a POST?). Anyways, ensure your USB charger that plugs into the wall that can supply plenty of power. The websites say 700ma at a minimum. I find using a 700ma charger is not sufficient. I use a charger that can push 2A, and I dont see many problems.




How does this work? 

A project called Mono. The Mono team has implemented a Common Language Runtime (CLR) that runs in the Linux and Mac environments and is coded to the ECMA-335 Common Language Infrastructure (CLI) AND covers functions and classes in the .NET framework, going all the way to 4.0 with some 4.5! Its open source, of course, and also has a compiler that follows the ECMA-334 C# Language Specification to turn C# code into CLI intermediate code that can be ran in windows as well. Remember, the CLI is just a specification that any language could (theoretically) be compiled to CLI.




Installing Mono C# on Raspberry Pi

This step was pretty straight forward as well. The instructions below are if you installed the NOOBS package which uses Raspian. If you have a different flavor of Linux, the commands below might be different.

You should already have sudo installed on your raspb pi. Prefixing a command with sudo allows you to run processes under a higher privilege without having to log into root. Also if you didnt know, the default username/password to log in the first time is pi/raspberry. If you prefer, you can type 'startx' to bring up the xwindows GUI. The commands below need to be entered into a terminal, which can be brought up within the GUI.

Fist, you want to update your Raspian to the latest version. To do that, you have to have the raspberry pi hooked up the the internet. If you have an ethernet cable and the router uses DHCP, plugging in the ethernet will be sufficient. Then, at the console simply enter the below line into the console:

sudo apt-get update

That may take a few minutes to complete and might prompt you to hit Y/N regarding the size of the package.

sudo apt-get install mono-runtime

This will also will take a few minutes to complete and might prompt you to hit Y/N regarding the size of the package.

After you've accomplished that, go have another beer because that was hard work!




Mono can now be used to run .NET executables:

mono Test.exe

Or, if your program requires elevated rights:

sudo mono Test.exe


Mono also features a REPL (read eval print loop). To access it, type 'csharp'. You can use your favorite text editor to make .cs files and compile them. My recommendation is, of course, to use Microsoft's Visual Studio. You can build and compile an application with MSVS in windows, and just transfer the executable by SCP or thumb-drive to the raspberry pi, which is pretty slick. Hats off to the developer(s) of Mono.


Saturday, April 18, 2015

Hindenbugs, Heisenbugs and other types of software bugs




Different Types of Software Bugs


    Sorry, I haven't gotten around to creating a new post in close to a month (yikes!). I have just been super busy at work and have been trying to complete about 3 out of several not-quite-finished personal projects that I will be releasing on GitHub and blogging about

Heisenbug--
    1) A software bug that disappears or alters its behavior by the action of attempting to debug it.
    Possible sources: The effect of debuggers on the run-time code or JIT can be one source. Another might arise because of process scheduling or threading and race conditions. Or both, as stepping through the code with a debugger will affect the timing of threads.
    Derivation: Werner Heisenberg and his Uncertainty Principle.


Mandelbug--
    1) A bug whose causes are so complex it defies repair, or makes its behavior appear chaotic or even non-deterministic. Other symptoms include core dumps that, when viewed in an editor, form complex but repeating patterns or designs of characters and symbols.
    Possible sources: Operating system environment or configuration, the presence or absence of file system objects, time or scheduling-dependent code. Also, a very complicated state machine esp. one with more than one variable that hold state information and where transitions may not exists for every possible permutation of one state to another.
    Derivation: Benoît Mandelbrot and his research in fractal geometry.


Schrödinbug--
    1) A bug that manifests itself in running software after a programmer notices that the code should never have worked in the first place.
    Possible sources: A combination of naughty coding practices such as coding by coincidence and something else that allows for unexpected behavior such as a the effect of custom configurations or compiler optimizations, code obfuscation, or the JIT or on code. Also, a dependency on some arcane piece of technology that no one truly understands or employment of a black-box system or library, or some ancient, dinosaur system with a highly specific configuration that is so fragile that no-one dares update it because said updates could likely or is known to break functionality and where even a reboot is considered hairy.
    Derivation: Named for Erwin Schrödinger and his thought experiment.


Bohrbug--
    1) In contrast to the Heisenbug, the Bohrbug, is a "good, solid bug", easy to hunt down, or easily predicted from the description, esp. when a bug is the result of a classical programming mistake, or 'a rookie move'.
    Possible sources: Failing to initialize a variable or class to anything other than null, failure to RTFM, misuse of pointers or general abuse of memory, not coding defensively, coding by coincidence or not truly understanding how (or why) your code works.
    Derivation: Named after the physicist Niels Bohr and his rather simple atomic model.


Hindenbug--
    1) A bug with catastrophic consequences, esp. one that actually causes the server to burst into bright, hot flames.
    Possible sources: Code that dynamically builds and executes SQL scripts, esp. scripts that make use of the DELETE FROM command, code that is self modifying or replicates, or code that controls large machines or a physical system such as pumps, belts, cooling systems, aggregate pulverizer, fans, or any sort of thing with large, rotating blades. Also, any software that controls, monitors, tests, or is in any way whatsoever, wired up to a tactical nuclear defense system. In fact, lets just include anything with 'nuclear' or 'pulverize' in the name.
    Derivation: Refers to the Hindenburg disaster. The Hindenburg Blimp was, in turn, named after Paul von Hindenburg, the then-president of Germany from 1925->1934.



    Kishor S. Trivedi has a great talk/slideshow about Software Faults, Failures and Their Mitigations. He posits that it is not realistic to write software that is 100% bug free, or have 100% up-time. He displays the downtime in terms of minutes per year (MPY?) of several reliable corporations to support his claims, and it is true that as far as I am aware,there have not been any software ever written that did not have some downtime, even NASA.
    However, Trivedi shares a quote by one E. W. Dijkstra: "Testing shows the presence, not the absence, of bugs". Aww, logic. Now that's something I can get behind. Indeed; It is impossible to provably show that any software (of sufficient complexity) is absolutely error-free.
    Following this, he suggests we should not strive for the virtually impossible task building fault-free software, but rather aim to build instead fault-tolerant software.



Software Faults -> Software Errors -> Software Failures

Software Faults lead to Software Errors that lead to Software Failures.

Trivedi defines faults, errors and failures:
      -Software Failure occurs when the delivered service no longer complies with the desired output.
      -Software Error is that part of the system state which is liable to lead to subsequent failure.
      -Software Fault is adjudged or hypothesized cause of an error.Faults are the cause of errors that may lead to failures



    So, how does one test their tactical nuclear defense system code? VERY carefully, and it probably wouldn't hurt to comment out the Launch() method as well.